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PREFACE

Since 1996, the National Institute of Standards and Technology has sponsored a
yearly evaluation of speaker recognition systems. AFRL/HEC has participated in
these evaluations since 2001. This report summarizes the systems submitted by
AFRL/HECP for the 2004 Speaker Recognition Evaluation. The evaluation con-
sisted of seven training conditions by four testing conditions for a total of 28 task
conditions. In addition, for each standard (nonadaptive) system submitted for a
given task condition, participants could submit the same system operated in an
unsupervised adaptation mode. AFRL/HECP submitted systems for all 28 task
conditions, one of only three groups to do so out of the 24 participating groups from
twelve countries. In addition, AFRL/HECP submitted unsupervised adaptation
systems for four of the conditions. A total of ten different systems were submit-
ted across the conditions (not counting unsupervised adaptation modes). These
systems were various combinations of the scores from eight component systems.
Component systems unique to AFRL/HECP’s submission included a system based
on glottal model parameters; a system based on formant center frequencies, formant
bandwidths, and fundamental frequency; and a system based on mel-frequency cep-
stral coefficients (MFCCs) and phoneme-specific Gaussian mixture models (GMMs).
These systems were developed over the course of Workunit 71841003, Robust Voice
Processing and Identification.

The authors would like to acknowledge support from the following groups: (1)
MIT Lincoln Laboratory for their MFCC/GMM system and the LNKnet neural
network package; (2) Prof. Bryan Pellom of the University of Colorado at Boulder
for the Sonic speech recognizer, acoustic models, and a phoneme “language” model;
(3) Cambridge University for their Statistical Language Modeling Toolkit (originally
developed at Carnegie Mellon University) and their Hidden Markov Model Toolkit
(HTK); and (4) KTH for their Wavesurfer audio analysis tool and the Snack toolkit.

Further support for this work was provided by General Dynamics Advanced
Information Systems (GDAIS) under contract F41624-97-D-6004 and by Sytronics,
Incorporated under contract F33615-98-D-6000. Mr. Brian Ore of GDAIS developed
the segmentation system described here and a speech activity detector based on
HTK. He also developed code to compute cepstral coefficients from linear prediction
coefficients and did some work in combining the system scores. Mr. Anthony Halley
of GDAIS generated glottal model features for the evaluation data and generated
phoneme labels using Sonic. Dr. Vince Schmidt of Sytronics ported the original
parallel glottal model code of the first author to the Parallel Virtual Machine (PVM)
library and made other improvements resulting in faster parallel execution.

iii




TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
1 INTRODUCTION
2 EVALUATION OVERVIEW

COMPONENT SYSTEMS
3.1 GMM-Based Systems
3.1.1 Glottal Model System
3.1.2 Linear Prediction-Based Cepstral Coefficient System
3.1.3 Formant Center Frequencies, Formant Bandwidths, and FO System
3.1.4 Mel-Frequency Cepstral Coefficient System
3.1.5 Phoneme-Specific Mel-Frequency Cepstral Coefficient System
Language Modeling Systems
3.2.1 Word-based Language Model System
3.2.2 Phoneme-based Language Model System
3.3 Unsupervised Adaptation
3.4 HMM-Based Speech Activity Detector
3.5 Segmentation

SUBMITTED SYSTEMS

RESULTS

5.1 The NIST 2003 Limited Data Task and the NIST 2004 One-Side Training and
One-Side Testing Task

5.2 Effect of the HMM SAD

5.3 Effect of Training Length for the NIST 2003 and 2004 Evaluations

5.4 Effect of Combining System Scores for the NIST 2004 Evaluation

5.5 One-Conversation Testing in the NIST 2004 Evaluation

6 CONCLUSIONS

REFERENCES




O i W N -

10

11

12

LIST OF FIGURES

The Fujisaki-Ljungqvist glottal model.

The modified Fujisaki-Ljungqvist glottal model.

Block diagram of the glottal model parameter estimation procedure.

Block diagram of HMM-based speech activity detector.

DET plot comparing the NIST 2003 Limited Data Task with the NIST 2004
one-side training and one-side testing task.

DET plot for the NIST 2004 evaluation one-side training and one-side testing
condition showing the effect of the HMM SAD.

DET plot for the NIST 2004 evaluation eight-sides training and one-side testing
condition showing the effect of the HMM SAD.

DET plot comparing NIST 2004 evaluation with the NIST 2003 Extended Data
evaluation with one-side training and one-side testing.

DET plot comparing NIST 2004 evaluation with the NIST 2003 Extended Data
evaluation with eight-sides training and one-side testing.

DET plot showing the effect of combining system scores for the NIST 2004 eval-
uation with one-side training and one-side testing.

DET plot showing the effect of combining system scores for the NIST 2004 eval-
uation with eight-sides training and one-side testing.

DET plot for one-conversation testing conditions with and without T-norm.

00 3 O

14

17

18

18

20

20

21

21
22




=W N =

LIST OF TABLES

Component Systems Versus Training and Testing Condition 4
Submitted Systems in Terms of Component Systems 15
Submitted Systems Versus Training and Testing Condition 15
Equal Error Rates (EERs) for Four Component Systems for 2003 and 2004 17

vi




1 INTRODUCTION

Since 1996, the National Institute of Standards and Technology (NIST) has sponsored a yearly
evaluation of speaker recognition systems.! AFRL/HEC has participated in these evaluations
since 2001. This report summarizes the systems submitted by AFRL/HECP for the 2004
Speaker Recognition Evaluation. The evaluation consisted of seven training conditions by four
testing conditions for a total of 28 task conditions. In addition, for each standard (nonadap-
tive) system submitted for a given task condition, participants could submit the same system
operated in an unsupervised adaptation mode. AFRL/HECP submitted systems for all 28 task
conditions, one of only three groups to do so out of the 24 participating groups from twelve
countries. In addition, AFRL/HECP submitted unsupervised adaptation systems for four of
the conditions. A total of ten different systems were submitted across the conditions (not
counting unsupervised adaptation modes). These systems were various combinations of the
scores from eight component systems. Component systems unique to AFRL/HECP’s submis-
sion included a system based on glottal model (GM) parameters; a system based on formant
center frequencies, formant bandwidths, and fundamental frequency (FMBWF0); and a system
based on mel-frequency cepstral coefficients (MFCCs) with phoneme-specific Gaussian mixture
models (GMMs). These unique systems were developed over the course of Workunit 71841003,
Robust Voice Processing and Identification. This report describes the component and combined
systems and shows the performance of these various systems for some of the task conditions of
the 2004 and (for comparison purposes) 2003 evaluations.

An outline of this report is as follows. The next chapter briefly describes the evaluation
framework. Chapter 3 describes the various component systems as well as a speech activ-
ity detector (SAD) based on a hidden Markov model (HMM), which was used with some of
the GMM-based component systems. The chapter also discusses the unsupervised adaptation
strategy and the speaker segmentation system used for the evaluation. Chapter 4 discusses
the submitted systems. Chapter 5 presents some results for the various systems in the form of
detection error tradeoff (DET) plots, and Chapter 6 presents some conclusions and suggestions
for future work.

!See http://www.nist.gov/speech/tests/spk/index.htm for the various evaluation plans




2 EVALUATION OVERVIEW

The NIST 2004 Speaker Recognition Evaluation consisted of 28 task conditions that were a
combination of seven training conditions and four testing conditions [1]. The training and
testing conditions involved various amounts of data and were defined in terms of a conversation
side—namely, the last five minutes from a six-minute conversation by two strangers generally
based on a single given topic. The training conditions were defined by the following training
data:

10 sec: An excerpt from a single channel conversation side estimated to contain
approximately 10 seconds of speech;

30 sec: An excerpt from a single channel conversation side estimated to contain
approximately 30 seconds of speech;

1 side: A single channel conversation side of approximately five minutes total duration;
3 sides: Three single channel conversation sides involving the same speaker;
8 sides: Eight single channel conversation sides involving the same speaker;
16 sides: Sixteen single channel conversation sides involving the same speaker; and

3 convs: Three summed-channel conversations, formed by sample-by-sample summing
of the two sides of actual conversations, each including a common speaker (the
target of interest) and a second speaker not participating in the other two
conversations.

The testing conditions were defined by the following testing data:

10 sec: An excerpt from a single channel  conversation side estimated to contain
approximately 10 seconds of speech;

30 sec: An excerpt from a single channel conversation side estimated to contain
approximately 30 seconds of speech;

1 side: A single channel conversation side of approximately five minutes total duration;
and

1 conv: A summed channel conversation, formed by sample-by-sample summing of the
two sides of an actual conversation.

All of the training data were collected over telephone channels including cellular and land
line handsets. The testing data were mostly telephone speech but included some data from
various types of microphones. Most of the training and testing data were in English, but some
conversations involving bilingual speakeres were collected in Arabic, Mandarin, Russian, and
Spanish.

Word transcripts for all English-language training and testing segments were provided to
the evaluation participants by NIST. The transcripts were generated by BBN using a speech
recognizer based on their conversational-telephone-speech recognizer submitted for the NIST
2003 Rich Transcription Evaluation (RT-03). It is estimated that the word error rate of the
system was in the 20-30% range.




3 COMPONENT SYSTEMS

Table 1 shows the component systems run for the various training and testing conditions. Five
of the systems were based on Gaussian mixture models (GMMs) and two were based on language
modeling. The FMBWF0 system was based on the first three formant center frequencies, the
first three formant bandwidths, and the fundamental frequency, FO. The GM system was based
on parameters from a glottal model. The LPCC system was based on cepstral coefficients
and delta cepstral coefficients computed from the linear prediction polynomial determined in
a closed-phase analysis of each speech signal. The MFCC system was based on mel-frequency
cepstral coefficients and delta cepstral coefficients. The PS-MFCC system was similar to the
MFCC system except that separate GMMs were computed for each phoneme for each speaker.
The PLM system was based on applying language modeling techniques to phoneme labels
determined by a phoneme recognizer, while the WLM system was based on applying language
modeling techniques to the words as determined by a speech recognition system. Systems listed
with “(UA)” were run in nonadaptive mode and also with unsupervised adaptation (UA).

3.1 GMM-Based Systems

The GMM-based systems all used Version 2.1 of the MIT Lincoln Laboratory (MIT-LL) system
[2]. In general, only frames labeled as speech by the MIT-LL ztalkN energy-based speech activity
detector (SAD) were used. The GMMs used diagonal covariance matrices, and the number of
mixtures depended on the feature set. Background, target, and T-norm models (3] used: (1)
512 mixtures for the GM and FMBWFO0 systems, (2) 2048 mixtures. for the MFCC and LPCC
systems, and (3) 1024 or 2048 mixtures depending on the phoneme for the PS-MFCC system.
In adapting a target or T-norm model from the background model, different strategies were used
depending on the feature set. The weights, means, and variances were adapted for the GM and
FMBWFO systems, while only the means were adapted for the MFCC, PS-MFCC, and LPCC
systems. These adaptation strategies were determined to be the best for their respective feature
sets based on experiments using data from NIST evaluations of prior years. The data used to
build background and T-norm models came from databases available from the Linguistic Data
Consortium.? -

The background models for the FMBWF0, GM, LPCC, and MFCC systems were gender-
independent, using a total of 13 hours of data from 74 male and 74 female speakers taken from
Switchboard II Phase 3 and Switchboard Cellular I. The channel mix was as follows: (1) 40
speakers from cellular channels (mostly GSM and unknown cellular, with only a few CDMA)
and (2) the rest evenly split between electret and carbon button land line handsets.

The background models for the PS-MFCC, PLM, and WLM systems were independent of
gender, using approximately 42 hours of data from 250 male and 250 female speakers taken
from Switchboard II Phases 2 and 3. The data for these background models only included land
line (mostly electret handset) data originally used in the NIST 2002 and 2003 Extended Data
Tasks for splits 6-10.

For most systems, a score normalization technique known as T-norm was applied [3]. Let
S(U,C) be the score from some system for a test utterance, U, against a claimant model, C.
Let {T1,...,Tn} be a set of N (T-norm) speakers not found in the background model set and
not found in the the NIST 2004 evaluation set. One tests U against each of the N T-norm
models and computes the mean, uy, and standard deviation, oy, of the scores from the T-norm

2See http://www.ldc.upenn.edu




Table 1: Component Systems Versus Training and Testing Condition

Training Testing Condition
Condition 10 sec 30 sec 1 side 1 conv

MFCCs, MFCCs, MFCCs, MFCCs with

10 sec FMBWFO, FMBWFO, FMBWFO, HMM SAD
LPCCs, GM | LPCCs, GM LPCCs & clustering

MFCCs, MFCCs, MFCQCs, MFCCs with

30 sec FMBWFO, FMBWFO, FMBWFO, HMM SAD
LPCCs, GM | LPCCs, GM LPCCs & clustering

MFCCs, MFCCs, MFCCs, PS-MFCCs, MFCCs with

1 side FMBWFO, FMBWFO0, | LPCCs, FMBWFO0 (UA), | HMM SAD
LPCCs, GM | LPCCs, GM | WLM (UA), PLM (UA) | & clustering

MFCCs, MFCCs, MFCCs, PS-MFCCs, MFCCs with

3 sides FMBWFO0 FMBWFO0 FMBWFO0 (UA), HMM SAD
WLM (UA), PLM (UA) | & clustering
MFCCs, MFCCs, MFCCs, PS-MFCCs, MFCCs with

8 sides FMBWFO0 FMBWEFO0 FMBWFO0 (UA), HMM SAD
WLM (UA), PLM (UA) | & clustering
MFCCs, MFCCs, MFCCs, PS-MFCCs, MFCCs with

16 sides FMBWEFO0 FMBWEF0 FMBWFO (UA), HMM SAD
WLM (UA), PLM (UA) | & clustering
MFCCs with | MFCCs with MFCCs with MFCCs with

3 conv HMM SAD | HMM SAD HMM SAD HMM SAD
& clustering | & clustering & clustering & clustering

models. The adjusted score, St(U, C), (after applying T-norm) for U against model C for the

system is:

provided that oy # 0.

ST(U7 C) =

(1

KU
oy :

For the FMBWFO0, GM, LPCC, and MFCC systems, the T-norm was gender-independent
using a total of nine hours of data from 50 male and 50 female speakers from Switchboard II
Phase 3 and Switchboard Cellular I. The channel mix was as follows: 50 speakers from cellular
channels (mostly GSM and unknown cellular, with only a few CDMA) and the rest split between
electret and carbon button land line handsets (68% electret and 32% carbon button). For the
10-second and 30-second test cases, the T-norm models were built from the first 30 seconds of
data from the original set of T-norm models.

For the PS-MFCC and WLM systems, the T-norm was gender-independent using approx-
imately 17 hours of data from 50 male and 50 female speakers from Switchboard II Phases 2
and 3, all outside the scope of the NIST 2003 Extended Data Task. Each model was built using
two conversation sides. The data were only from land line handsets.
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Figure 1: The Fujisaki-Ljungqvist glottal model.

3.1.1 Glottal Model System
This section briefly discusses the glottal model (GM) system [4]. The GM used was a modifi-
cation of one originally proposed by Fujisaki and Ljungqvist [5].
Figure 1 shows a plot of the Fujisaki-Ljungqvist GM (FLGM) [5], a piecewise polynomial
model of the effective voice source. The equation for the model over a pitch period is:

( A_2A—}i-2Rat+A—1+-22Rat2

for t € (0, R],

at-Ry+38=2Fa,_p@_2B-_Fa;_p® fortec(R W),

F F
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5k CD ]
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T is the pitch period; W = R + F is the duration of the open phase; and A, B, C, D, F, and
R are parameters of the model.

Note that the FLGM equations as given in [5] contain two errors. First, the denominator
of the ¢ term for ¢ € (0, R] is given as R in [5] but should be R? as given here. Second, the




first term in the numerator of & involving 4AR is positive in [5] but should be negative as given
here. The formula for o comes from the fact that the integral of the model over a pitch period
should be zero so as not to introduce a long term trend. Choosing « as given here ensures that
the FLGM has the desired integral property.

When estimating the parameters of a GM, one should ensure that the parameter values
yield physically meaningful models. However, with the original FLGM, it can be difficult to
enforce proper constraints. The timing parameters R, F', and D are not defined in terms of T;
thus, as T increases, so do the allowable ranges for R, F', and D. For a physically meaningful
model, one cannot have R greater than or equal to T—likewise, for F' and D. Further, one
cannot have R+ F, R+ D, F + D, or R+ F + D greater than or equal to T. The parameter
A must be nonnegative but is theoretically unbounded above, and the parameter B must be
negative but is theoretically unbounded below. Practically speaking, one often assumes that
|A| < |B|, but this means that the upper bound on A varies as B varies.

For the work described here, a modified form of the FLGM was used. There were two main
issues that drove the modifications. First, it was important to allow for more easily enforcing
proper parameter constraints in the parameter estimation algorithm. Second, the FLGM is
defined from glottal opening to glottal opening; however, reliably finding the instants of glottal
opening is much more difficult than finding the instants of glottal closure. Thus, the modified
FLGM (MFLGM) was defined from glottal closure to glottal closure.

Figure 2 shows a plot of the MFLGM. Note that the plot shows the time as a fraction of the
pitch period, 7', and that the timing parameters are defined in terms of 7. Thus, the time that
the glottis is open is ¢T’, giving ¢ as the open quotient (i.e., the fraction of the pitch period over
which the glottis is open). One can define p as an “opening” quotient, the fraction of the open
phase during which the glottal flow is increasing: thus, pgT is equivalent to R in the FLGM.
The m, ¢, and r parameters are all bounded by zero and one, making it easy to enforce proper
constraints on them. The parameter p has tighter bounds. It must be less than one, and it
must be greater than or equal to 0.5. The lower bound of 0.5 ensures that the glottal model
has the proper skew (i.e., the time duration over which the glottal flow increases is greater
than or equal to the duration over which the glottal flow to decreases). The equivalent of the
B parameter is constrained to be —1 in the MFLGM, and the gain is handled elsewhere in the
parameter estimation process. Finally, the u parameter, while theoretically unbounded above,
generally can be constrained in practice to be less than one, given that B = —1. Let

6(1 — p) — 4up

(1 -p)? - 2p%] qT"’
mr

3—1r'
and v = (1 — q¢)T + pqT', then the MFLGM is
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Figure 2: The modified Fujisaki-Ljungqvist glottal model.

The parameter estimation procedure consists of three phases as shown in Figure 3. The
first phase determines the instants of glottal closure and opening, which are used to determine
closed phases for analysis. The second phase performs a smoothed closed-phase (CP) analysis
of the speech signal followed by inverse filtering in order to obtain a residual signal, and the
third phase estimates the GM parameters from the residual signal.

In Figure 3, the blocks to the left of the smoothed CP analysis block are designed to get
the instants of glottal closure and opening. To find the glottal closures, one performs linear
prediction (LP) analysis on the speech signal every 10 msec and inverse filters the speech signal
with the resulting LP models to get a residual signal. The data used in the NIST evaluation
was sampled at 8 kHz, so the LP analysis used a model order of 10. In parallel with this step,
one estimates FO and the probability of voicing every 10 msec. For the work described here,
the Entropic get_f0 command was used to estimate FO and the probability of voicing.

Next, one uses a peak picker to determine the quasi-periodic instants of maximum excitation
in the residual, which are assumed to correspond to glottal closures. The Entropic epochs
command was used to perform this task in early experiments; however, it often chose peaks
with spacings that did not correspond to the FO estimates from the get_f0 program. Instead,
another peak picker was used. The peak picker used the probability of voicing to determine the
segments of the residual over which to find peaks; it did not pick peaks in unvoiced segments.
The peak picker used FO to help determine peak spacing, working from strong peaks in the
middle of each voiced segment both forward and backward to the ends of the segment and
choosing strong peaks with spacings that roughly corresponded to the F0 estimates from get_f0.
It used additional passes to attempt to fix pitch doubling and halving. Note that depending on
the glottal model used, the “closure” marks may just signify the points of maximum excitation
rather than strict closure points (hence the quotes around the word “Closure” in Figure 3).
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Figure 3: Block diagram of the glottal model parameter estimation procedure.

The last step of this phase is to find the instants of glottal opening. One might conceive
of using the residual and the glottal closures (and perhaps other information) to determine the
instants of glottal opening; however, as previously mentioned, reliably determining instants of
glottal opening is difficult due to the fact that the abruptness of glottal closure leads to a much
more pronounced effect on the effective voiced source compared to that due to the more gradual
glottal opening. Instead of using the residual and a more complicated procedure to estimate the
instants of glottal opening, it was decided to fix the glottal opening points by using a nominal
closed quotient of 30% for each pitch period (i.e., an opening was “declared” to occur 30% of
the way into each pitch period). The fixed closed quotient means that the next phase of the
estimation procedure is not doing strict CP analysis and is the reason for the quotes around
the word “Opening” in Figure 3. The value of 30% was chosen as a compromise between using
enough data to estimate an LP model and choosing a value small enough so as to be doing CP
analysis in at least an approximate sense, but additional research should be done to more fully
explore the impact of this trade-off. For some pitch periods of high F0, a 30% closed phase did
not provide enough data points to estimate the parameters of the LP model. In these cases,
the CP analysis extended the closed phase just enough to get enough data to estimate the LP
model. Note that even though a nominal closed quotient of 30% is used in the CP analysis, the
open quotient parameter, g, is allowed to vary in the glottal model estimation procedure.

One further item to note is that the FO value that is fed into the “Estimate Glottal Model
Parameters” block comes from the spacing between adjacent “closure” marks, not from the
original estimate of the get_f0 command.

Smoothed CP analysis is a generalization of standard CP analysis. In standard CP analysis,
for a given pitch period, one forms a correlation matrix, Ry, and a correlation vector, rg,
according to the covariance method of LP [6] and solves the equation Roz = 1o for the vector




of LP polynomial coefficients, z. Smoothed CP analysis adds the correlation matrices from
adjacent pitch periods as well as the correlation vectors prior to computing the LP polynomial.
Let R; be the it correlation matrix, r; be the ith correlation vector, and z be the vector of
the LP polynomial coefficients for the 0t* pitch period. Compute Rs = R_; + Ro + R; and
rs =T_1+ 70 + r1, then solve Rgz = rg for z. In sliding to the next pitch period, the current
Ry becomes R_;, the current o becomes r_;, the current R; becomes Ry, and so on. Thus,
only one new correlation matrix and one new correlation vector need to be computed each pitch
period, just as in standard CP analysis. For the NIST evaluation, one additional pitch period
from both the left and the right was used; although, one might want to try a factor of two
or more for speech from females due to their higher pitch. Also, for the NIST evaluation, the
analysis used an LP order of ten and a preemphasis factor of 0.97. Prior to inverse filtering
the speech signal, the stability of the LP polynomials was checked and any unstable roots were
reflected about the unit circle.

When estimating the GM parameters from the CP residual, the first step is to normalize
the gain of the CP residual (to account for setting B = —1 in the MFLGM). For each pitch
period, fit a line through the absolute value of the two closure points that define it. This line
gives a y-intercept parameter, gg, and a slope parameter, g;. Divide each point of the CP
residual for the pitch period by its corresponding point on the line. This procedure yields the
gain-normalized CP residual.

Typically in glottal modeling, one estimates the model parameters by minimizing the
squared error between the model and the residual in the time-domain. However, the low-pass
filtering performed prior to sampling (to reduce aliasing) and the distortion of the telephone
bandwidth can lead to errors in the parameter estimates. In this work, a frequency-domain
metric was used—namely, the squared error between the sine and cosine terms of the harmonic
coefficients of the gain-normalized CP residual and those of the MFLGM. (For each pitch pe-
riod, the spacing between the closure points defining the pitch period was used to determine
the value of FO to be used in computing the harmonics.) Let gq(k) be the k** data point in the
gain-normalized CP residual for a pitch period, then gq(k) is modeled as:

N
9d(k) = aqo + z agd.n cos(wonkTy) + bgn sin(wonkTy)

n=1

for k = {0,...,K — 1}, where wg = 27F0, T; is the sampling time, K is the number of data
points in the pitch period, and N is the number of harmonics that lie within the bandwidth of
the speech signal. The harmonic coefficients of the data, agz0, @4n, and by, forn = 1,... N,
are estimated by solving a linear matrix equation using the pseudoinverse. The Fourier series
expansion of the MFLGM yields the harmonic coefficients of the model in terms of m, p, ¢, r,
and u. The Fourier series of the GM is found as
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where Ty = 1/F0. (Note that ampo = 0 due to the previously mentioned integral property of
the GM.) It was found that the speaker recognition performance improved by multiplying the
MFLGM harmonics by an overall gain term, G, so this gain was included in the final metric
used for the NIST evaluation. The metric was

N
. 1 2
metric = = T ( al, +b5, - Gyad .+ b2, ) :
n=1

The chosen metric is nonlinear in the parameters of the GM. While one could employ
iterative estimation techniques, these can converge to local minima. A simpler but more com-
putationally intensive procedure was used here. Offline, use the Fourier series expansion of
the MFLGM to build a large linked codebook of (m,p, g, 7,u) 5-tuples and their corresponding
harmonic coefficient vectors. For a given pitch period and a given harmonic vector from the
codebook, find the gain that minimizes the squared error between the gain-weighted model
harmonics and those of the gain-normalized CP residual. The best harmonic vector for the
pitch period in terms of the metric yields the optimal model parameters for the pitch period,
(m*,p*,q*,r*,u*), as well as the optimal gain, G*, and the optimal metric, metric*.

The MFLGM used for the NIST evaluation used u = 0 to reduce the computational load
in the parameter estimation procedure. Experiments in allowing u to vary from zero to 0.6 in
steps of 0.1 yielded better fit errors between the model and the data than did setting u = 0, but
allowing u to vary did not yield any benefit in speaker recognition performance and required
considerably more computation than did setting u = 0. Thus, u was set to zero and was not
used as a feature for speaker recognition. For each pitch period, the set of features used for
speaker recognition was {m*, p*, ¢*, r*, G*, metric*, go, g1, FO}.

Using the codebook in one serial process is very time consuming; however, the calculations
required for each codebook vector are independent of those for the other vectors. Thus, one
can break the full codebook into pieces and use them in separate parallel processes to speed
up the overall parameter estimation. Each process returns the optimal set of parameters for its
codebook piece, and a final process aggregates the separate results into a final optimal parameter
set for each pitch period. For the NIST evaluation, the full codebook used 270,000+ vectors on
the following grid: 0 < m < 1 in steps of 0.05, 0.5 < p < 1 in steps of 0.02, 0.4 < g < 1 in steps
of 0.02, 0 < r < 0.3 in steps of 0.02, and u = 0.

The glottal model features were then used in the MIT-LL GMM system and a gender-
independent T-norm was applied to normalize the scores from the GMM system. For the
10-second and 30-second training conditions, each T-norm model was built from 30 seconds of
data. For the one-side training condition, each T-norm model was built using a side from a
single five-minute conversation.

3.1.2 Linear Prediction-Based Cepstral Coefficient System

The LPCC system calculated 16 cepstral coefficients (excluding the 0** cepstral coefficient) from
the LP parameters [6] derived from the CP analysis used to find the glottal model parameters.
Cepstral mean subtraction was applied to the cepstral coefficients, and the feature set included
the deltas of the features.

These features were then used in the GMM system and a gender-independent T-norm was
applied. For 10-second and 30-second training conditions, each T-norm model was built from
30 seconds of data. For the 1-side training condition, each T-norm model was built using a side
from a single five-minute conversation.




3.1.3 Formant Center Frequencies, Formant Bandwidths, and FO System

The FMBWFO system was similar to that of [7]. First, FO and the probability of voicing were
determined every 10 msec using the Entropic Signal Processing System (ESPS) get.f0 command.
Next, the first three formant center frequencies (F1-F3) and the first three formant bandwidths
(B1-B3) were determined from Wavesurfer 1.6.2 (and Snack 2.2.2) from KTH.? Each F0 value
was converted to log scale. Each formant center frequency and bandwidth value was converted
to radians.

Extracted frames had (1) to be declared to be speech by the ztalkN SAD, (2) to be voiced;
(3) to have FO < 250 Hz; and (4) to have F1 # 500 Hz, F2 # 1500 Hz, and F3 # 2500 Hz.
Condition (3) was imposed because the pitch extractor was found to output pitch-doubled
frames at times, while condition (4) was imposed to eliminate frames where the formant tracker
failed. i

These features were then used in the GMM system and a gender-independent T-norm was
applied. For 10-second and 30-second training conditions, each T-norm model was built from
30 seconds of data. For the 1-, 3-, 8-, and 16-side training conditions, each T-norm model was
built using a side from a single five-minute conversation.

3.1.4 Mel-Frequency Cepstral Coefficient System

Mel-frequency cepstral coefficients (MFCCs) were computed using the MIT-LL GMM system
[2]. Nineteen MFCCs were calculated from the speech waveform and output every 10 msec.
"RASTA filtering was applied to the MFCCs and deltas were then calculated. Only frames
labeled as speech by the ztalkN energy-based SAD were used.

These features were then used in the GMM system and a gender-independent T-norm was
applied. For 10-second and 30-second training conditions, each T-norm model was built from
30 seconds of data. For the 1-, 3-, 8-, and 16-side training conditions, each T-norm model was
built using a side from a single five-minute conversation.

3.1.5 Phoneme-Specific Mel-Frequency Cepstral Coefficient System

The PS-MFCC system was similar to the system described in [8] that used phoneme-only
adaptation. The main difference between this system and the one in [8] had to do with how
the phoneme labels were determined. The system described here used Sonic (Version 2.0-
betal) [9,10] run as a phoneme recognizer, not as a speech recognizer, whereas the system of [8]
used the phoneme labels from speech recognition transcripts provided by Stanford Research
Institute (SRI) for the NIST 2003 Extended Data Task. The acoustic models for Sonic were
provided by Prof. Brian Pellom (the original developer of Sonic) of the University of Colorado
at Boulder and were trained using land line data from Switchboard. A trigram “language”
model with phonemes in place of words was also built from Switchboard.

Background, target, and T-norm models were built as follows. MFCCs were computed
exactly as in the standard MFCC system of Section 3.1.4 (i.e., using the MIT-LL GMM system),
and each feature vector was associated with a phoneme label as output by Sonic. The phonemes
used were from the following set: {AE, N, AY, AH, M, AX, S, Y, IY, L, OW, IH, K, EY, R,
EH, AA, W}. A separate background GMM (of either 1024 or 2048 mixtures, depending on the
phoneme) was built for each phoneme using data from only Switchboard II (i.e., no cellular data
was used). For each target and T-norm speaker, a GMM was built for each phoneme, which

8 Available at: http:/ /www.speech.kth.se/wavesurfer and http://www.speech.kth.se/snack
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was adapted from the background model for that phoneme. Thus, each target and T-norm
“model” was actually a collection of GMMs with each GMM labeled with a specific phoneme.
For the 1-, 3-, 8-, and 16-side training conditions, each T-norm “model” was built using two
conversation sides of data from Switchboard II with phoneme transcripts generated by Sonic.

Scoring an utterance against a claimant “model” proceeded as follows. First, each feature
vector of the utterance was assigned a phoneme label by Sonic. Next, all the vectors for a given
phoneme were scored against the claimant’s GMM built for that phoneme, and a phoneme-
dependent T-norm was applied. Finally, the scores for each phoneme (after the phoneme-
dependent T-norm had been applied) were combined with a perceptron neural net that had
been trained using the MIT-LL LNKnet package.* The neural net used no hidden layers, and
the output nonlinearity was a standard sigmoid. The neural net had been trained using data
from the NIST 2003 Extended Data Task.

3.2 Language Modeling Systems

Two of the component systems were based on language modeling. The first was based on
modeling word bigrams, while the second system was based on modeling phoneme bigrams.

3.2.1 Word-based Language Model System

The CMU-Cambridge Language Modeling Toolkit® - (Version 2.05) formed the basis of this
system. A speech recognizer from BBN was used to generate transcripts, and these transcripts
were provided to the evaluation participants by NIST. The words from the transcripts were
assembled into pseudo sentences, where a pause greater than one second between words defined
a sentence break. Using no sentence breaks, where each conversation side became one sentence,
yielded worse performance than using pseudo sentence breaks.

Bigram language models were trained with the following parameters set in the toolkit:
top 20,000 words, Witten-Bell discounting, and zero cut-offs. Target models were trained by
concatenating all the sentences for each of the conversations allowed for each model, while the
background model was built in a similar way, but with all the sentences from all the files that
made up the background model.

To compute a score using the word-based language modeling (WLM) system, the sentences
from a test file were tested against a claimant model and the background model. The score for
a given test file and claimant model pair was computed as follows. Let B¢ be the set of bigrams
in the claimant model, C; Bp be the set of bigrams in the background model; and Br be the
set of bigrams in a test file, T. Let Br¢cg = Br N Be N Bp, and let Nyog be the number of
bigrams in Brcp. Let Pr(b, C) be the probability of bigram b in model C and Pr(b, B) be the
probability of bigram b in the background model. The score for T against the claimant model
C was computed as:

score(T,C)=ﬁ 3" log(Pr(b,C)) - log(Px(b, B)).

beBrcp

Thus, unknown or non-matching bigrams were ignored.

% Available at: http:/ /www.ll.mit.edu/IST/Inknet
SAvailable at: http:/ /svr-www.eng.cam.ac.uk/ prcl4/toolkit.html

12




One final step was taken with the inclusion of a gender-independent T-norm. 50 male and
50 female models were built using two conversation sides of data from Switchboard II® with
transcripts generated by a BBN speech recognizer.”

3.2.2 Phoneme-based Language Model System

The phoneme-based language model (PLM) system was similar to the WLM system, except
that it used bigrams of phonemes rather than bigrams of words. The phonemes were determined
by using Sonic [9,10] as a phoneme recognizer rather than as a speech recognizer. Unlike the
word language model system, no T-norm was applied.

3.3 Unsupervised Adaptation

For each system submitted using this paradigm, the same thresholds were used for both the
true/false decisions and for updating the speaker models. The thresholds used for 3-side training
were interpolated from the thresholds found from the 2- and 4-conversation side training of the
NIST 2003 Extended Data Evaluation. The adaptation procedure consisted of evaluating a
test file against a claimant model, and if the resultant score was above the threshold, then the
model was updated for use the next time. A model was updated by adding the current test
utterance to the current training data used to build a model and rebuilding the model. Using
this strategy yielded no improvement in performance over the standard (nonadaptive) mode of
operation.

3.4 HMM-Based Speech Activity Detector

For the segmentation tasks, a SAD based on HMMs was used rather than just the energy-based
SAD discussed in Section 3.1. After the evaluation results were submitted, the HMM-based
SAD was tried for the other tasks and found to perform better than the energy-only SAD. This
section describes the HMM-based SAD. Results of using the HMM-based SAD with some of
the GMM-based systems are shown in Section 5.

Figure 4 shows a block diagram of the HMM-based SAD. The feature extractor computed 19
MFCCs and deltas (with no cepstral mean subtraction or RASTA filtering) using the Hidden
Markov Model Toolkit (HTK).® A two-state speech/non-speech HMM was built with HTK
using 80 mixtures per state. The HMM was trained on 100 Switchboard II speech files using
label files provided by SRI. The ztalkN energy-based detector refined the output from the
HMM-based detection; thus, segments were declared to be speech only if they satisfied both
detectors. The noise floor for ztalkN was set using the average frame energy from the top ten
non-speech segments from the HMM-based detection. Finally, the post-processing removed any
speech segments of less than 20 msec in duration.

3.5 Segmentation

This section describes the segmentation-based system, which used the MFCC feature set de-
scribed in Section 3.1.4 and the HMM-based SAD described in Section 3.4. Each speech file was

5See http://www.ldc.upenn.edu

"Note that the recognizer used to generate transcripts for Switchboard II was most likely not the same as
that used to generate transcripts for the 2004 Evaluation data.

8 Available from: http://htk.eng.cam.ac.uk
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Figure 4: Block diagram of HMM-based speech éctivity detector.

segmented into speaker homogeneous regions. This was accomplished by using the HMM-based
SAD to define utterance boundaries and then clustering similar speech segments.

An agglomerative clustering method was used to cluster similar speech segments. In order
to determine which segments should be clustered together, a GMM system was used. A 64-
mixture GMM was trained using all of the vectors classified as speech, and then the weights
of this model were adapted to fit the characteristics of each speech segment (thus creating a
separate model for each speech segment). In each stage of the clustering, the feature vectors
for each speech segment were scored against all of the models and the highest scoring feature
vector/model pair were merged. This process was repeated until three sets of segments were left
(presumably, a set of segments for each of the two speakers and a set of “garbage” segments).

For the three-conversation training conditions, the same clustering method was used across
the three speech files to determine the common speaker in the three files. For the one-
conversation test conditions, each of the three sets of segments was tested against the claimant
model and the highest score was taken as the overall score. No T-norm was applied for the
actual evaluation, but after the evaluation, T-norm was added for the one-conversation testing
cases.
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4 SUBMITTED SYSTEMS

Table 2: Submitted Systems in Terms of Component Systems

The submitted systems were as outlined in Tables 2 and 3. Systems 1-3 were simple linear
weightings of the scores from componenet systems. System 5 was used for the segmentation
tasks. Systems 6 and 7 used perceptron neural nets (with no hidden layers and an output
sigmoid nonlinearity) trained on the NIST 2003 Extended Data Task. Systems 4, 8, 9, and 10
were component systems submitted for comparison purposes. Systems 810 were also submitted
with unsupervised adaptation.

System Description

]

1 | 0.7*score(MFCC with T-norm)+0.3*score(FMBWFO system with T-norm)

0.7*score(MFCC with T-norm)+0.15*score(FMBWFO system with T-norm)
+0.15*score(LPCC system with T-norm)

3 | 0.7*score(MFCC with T-norm)+0.1*score(FMBWFO system with T-norm)

+0.1*score(LPCC system with T-norm)+0.1*score(GM system with T-norm)

4 | MFCC system with T-norm

o

MFCC system without T-norm but using HMM SAD and clustering

6 | Fusion (with LNKnet) of scores from the MFCC system with T-norm, the

FMBWFO0 system with T-norm, and MFCC systems with T-norm for each of the
following phonemes from the Sonic speech recognizer: {AE, N, AY, AH, M,
AX,S,Y,IY, L, OW, IH, K, EY, R, EH, AA, W}

7 | Fusion (with LNKnet) of scores from MFCC systems with T-norm for each

of the following phonemes from the Sonic speech recognizer: {AE, N, AY, AH,
M, AX, S, Y, IY, L, OW, IH, K, EY, R, EH, AA, W}

8 | FMBWFO system with T-norm

9 | Language modeling applied to phonemes output by Sonic (without T-norm)

10 | Language modeling applied to the words from the BBN transcripts with T-norm
Table 3: Submitted Systems Versus Training and Testing Condition
Training Testing Condition
Condition | 10 sec 30 sec 1 side 1 conv
10 sec 1,2:3, 449152 3.4 1,2, 4 5
30 sec 1,284 7:.2,03,'4 1,2, 4 5
1 side 1,2,3,4(1,2,3,4(1,2,4,6,7,8 (UA),9 (UA), 10 (UA) 5
3 sides 1,4 1,4 1,4,6,7, 8 (UA), 9 (UA), 10 (UA) 5
8 sides 1,4 1,4 1,4,6,7, 8 (UA), 9 (UA), 10 (UA) 5
16 sides 1,4 1,4 1,4,6,7, 8 (UA), 9 (UA), 10 (UA) 5
3 conv 5 5 5 5
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5 RESULTS

This section presents some results comparing the performance of the various systems on data
from both the NIST 2004 and 2003 evaluations. The performance results are in the form of
detection error tradeoff (DET) plots [11], which are plots of miss probability versus false alarm
probability with both axes using a normal deviate scale.

5.1 The NIST 2003 Limited Data Task and the NIST 2004
One-Side Training and One-Side Testing Task

Figure 5 shows a DET plot for the FMBWF0, GM, LPCC, and MFCC systems for both the
NIST 2003 Limited Data Task and the comparable task from the 2004 Evaluation—namely,
the one-side training and one-side testing task. It is clear from this plot that the 2004 task is
considerably more difficult than the 2003 task for all four systems. This difficulty arises from at
least three factors. First, the 2004 data had much greater channel variability compared to the
2003 data, which was almost entirely cellular data (mostly CDMA and some GSM). Second,
the speech activity detector didn’t perform as well as it could have on the 2004 data; this will
be discussed more in Section 5.2. Finally, the 2004 data allowed languages other than English,
so a speaker model could be in one language while a testing file from that speaker could be in
another language, thereby generating some phonetic mismatch.

In addition to using DET plots, system performance is often summarized in terms of equal
error rate (EER), the value of the false alarm probability and the miss probability when the
two are equal. Table 4 shows the EERs for the same four component systems on the two tasks
as well as the absolute and percentage increases in EER relative to the EERs for the 2003
evaluation. From this table, one can see that the MFCC system performed the best in terms
of EER in both the 2003 and 2004 evaluations; however, the FMBWF0 system was the most
consistent across the two evaluations as evidenced by the fact that it yielded the lowest absolute
and percentage increases in EER. While the MFCC system performed better than the LPCC
system in terms of EER and absolute increase in EER, the two systems performed comparably
in terms of the percentage increase in EER. Finally, the GM system was the least consistent,
but performed comparably to the FMBWFO0 and LPCC systems for the 2003 evaluation. The
considerablybetter performance on the 2003 evaluation by the GM system is presumably due to
the greater channel homogeneity in the 2003 evaluation relative to that of the 2004 evaluation.

5.2 Effect of the HMM SAD

After the official system scores were submitted, experiments were performed to assess the effect
of using the HMM SAD with various component systems. Figures 6 and 7 show the effects
of using the HMM SAD versus the energy-only SAD for the FMBWFO system, the MFCC
system, and the combination of the FMBWF0 and MFCC systems (i.e., submitted system 1)
for one-side testing with one-side training and eight-sides training, respectively. Use of the
HMM SAD improved the performance of the FMBWFO system only a little, but it improved
the performance of the MFCC system quite a bit, resulting in a comensurate improvement in
the combination of the two systems. The FMBWFO0 system required that frames not only be
labeled as speech but also that they be labeled as voiced, whereas the MFCC system used all
frames labeled as speech. Thus, one can see that the HMM SAD made the biggest difference
in the speech/non-speech decisions for the unvoiced frames.
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Comparison of NIST 2004 with NIST 2003 Limited Data 1side Training Condition
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Figure 5: DET plot comparing the NIST 2003 Limited Data Task with the NIST 2004 one-side
training and one-side testing task.

Table 4: Equal Error Rates (EERs) for Four Component Systems for 2003 and 2004

EER for EER for Absolute Percentage

Component NIST 2003 NIST 2004 Increase in Increase in
System Limited One-Side Train & | EER Relative | EER Relative
Data Task | One-Side Test Task | to 2003 EER | to 2003 EER
FMBWF0 with T-norm 17.2% 24.2% 7.0% 41%
MFCC with T-norm 10.3% 19.3% 9.0% 87%
LPCC with T-norm 16.3% 30.9% 14.6% 90%
GM with T-norm 18.2% 37.9% 19.7% 108%
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NIST 2004 1side Training 1side Testing Condition all with Tnorm
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Figure 6: DET plot for the NIST 2004 evaluation one-side training and one-side testing condi-
tion showing the effect of the HMM SAD.
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Figure 7: DET plot for the NIST 2004 evaluation eight-sides training and one-side testing
condition showing the effect of the HMM SAD.
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5.3 Effect of Training Length for the NIST 2003 and 2004
Evaluations

Figures 8 and 9 show DET plots comparing the performance of the WLM, FMBWF0, MFCC,
and PS-MFCC systems for one-side testing with one-side training and eight-sides training,
respectively, for the NIST 2003 Extended Data and NIST 2004 evaluations. Again, one can
see that the performance of all of the systems is better for the 2003 evaluation than for the
2004 evaluation. Regardless of the evaluation year or the number of training conversations, the
PS-MFCC system performed the best, followed by the MFCC, FMBWFO0, and WLM systems
in that order. In general, the PS-MFCC system requires only one-quarter to one-third the
training data to perform comparably to the standard MFCC system. The FMBWF0 system
requires about eight times the training data to perform comparably to the MFCC system, while
the WLM system requires about eight times the training data to perform comparably to the
FMBWEFO system.

5.4 Effect of Combining System Scores for the NIST 2004
Evaluation

Figures 10 and 11 show the effect of combining component system scores for the NIST 2004
evaluation with one-side testing and one- and eight-sides training, respectively. For both train-
ing lengths, the combination of the FMBWF0, MFCC, and PS-MFCC systems outperforms
any of the individual WLM, FMBWF0, MFCC, and PS-MFCC component systems. Further
combining the WLM system score with the scores of the other three component systems pro-
vides almost no benefit for the single-side training condition, but provides as much benefit over
the combination of the other three systems as the combination of the other three component
systems provides over the PS-MFCC system.

5.5 One-Conversation Testing in the NIST 2004 Evaluation

Figure 12 shows the DET plot for the one-conversation testing conditions of the NIST 2004
evaluation for the MFCC system with and without T-norm, which was integrated after the
official evaluation submission. For every type of training level, T-norm provided a benefit. A
particularly interesting comparison is that between the three-side training condition and the
three-conversation training condition, in which one must determine what segments contain the
common speaker across the three training files. One can see that the three-conversation condi-
tion results in considerably worse performance relative to the three-side training condition. In
fact, the three-conversation training condition performs even worse than the 30-second training
condition. On the other hand, comparing the MFCC system in the one-conversation testing
and one-side training case with the MFCC system in the one-side testing and one-side training
case of Figure 10, one can see that the performance is comparable. Thus, there appears to be
room for significant improvement in the three-conversation training case.
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Comparison of NIST 2004 with NIST 2003 Extended Data 1side Training Condition
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Figure 8: DET plot comparing NIST 2004 evaluation with the NIST 2003 Extended Data
evaluation with one-side training and one-side testing.
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Figure 9: DET plot comparing NIST 2004 evaluation with the NIST 2003 Extended Data
evaluation with eight-sides training and one-side testing.
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NIST 2004 1side Training 1side Testing Condition all with Tnorm
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Figure 10: DET plot showing the effect of combining systein scores for the NIST 2004 evaluation
with one-side training and one-side testing.
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Figure 11: DET plot showing the effect of combining system scores for the NIST 2004 evaluation
with eight-sides training and one-side testing.
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Figure 12: DET plot for one-conversation testing conditions
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6 CONCLUSIONS

As can be seen from the performance of the various systems on the NIST 2004 data relative to
their performance on the NIST 2003 data, channel robustness continues to be an issue that needs
further work. This is especially the case for the GM and LPCC systems. Language and accent
issues also require further work, especially for the PS-MFCC system. A multilingual phoneme
recognizer and /or speech recognizer might help in this regard. For unsupervised adaptation to
be useful, additional work needs to be done to determine when to update a speaker’s model.
For the segmentation tasks, there appears to be room for significant improvement in the three-
conversation training conditions. Finally, combining system scores improves the performance
compared to that of single systems.
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